Feuille d'exercices : Matrices

Exercice 1 On note
$$\mathcal{A} = \left\{ A = \begin{pmatrix} a & a+b & b \\ b & a-b & a+2b \\ a & b & 0 \end{pmatrix} , (a,b) \in \mathbb{C}^2 \right\}.$$

Montrer que \mathcal{A} est un sous-espace vectoriel du \mathbb{C} -e.v. $\mathfrak{M}_3(\mathbb{C})$, et en donnér une base et la dimension.

Exercice 2 On considère la matrice de
$$\mathfrak{M}_n(\mathbb{R})$$
 suivante : $A = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$.

Calculer A^2 , en déduire que A est inversible et calculer son inverse.

Exercice 3 Soient a et b deux nombres complexes. On considère la matrice $A = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & b & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix}$.

Calculer A^n , pour $n \in \mathbb{N}^*$. On pourra utiliser la matrice $J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Exercice 4 Soit la matrice réelle $A = \begin{pmatrix} \cos \theta & 2 \sin \theta \\ \frac{\sin \theta}{2} & \cos \theta \end{pmatrix}$. Trouver $(\alpha, \beta) \in \mathbb{R}^2$ tel que $A^2 = \alpha A + \beta I$. Calculer A^n pour $n \in \mathbb{N}$.

Exercice 5 On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est :

$$\left(\begin{array}{cccc}
-11 & 7 & 0 \\
0 & 1 & 11 \\
1 & 0 & 7
\end{array}\right)$$

Déterminer une base de $\ker f$ et de $\operatorname{Im} f$.

Exercice 6

- 1. Déterminer les matrices qui commutent avec toutes les matrices de $\mathfrak{M}_n(\mathbb{K})$.
- 2. Déterminer les matrices qui commutent avec toutes les matrices diagonales de $\mathfrak{M}_n(\mathbb{K})$.
- 3. Déterminer les matrices qui commutent avec toutes les matrices triangulaires supérieures de $\mathfrak{M}_n(\mathbb{K})$.

Exercice 7 Théorème d'Hadamard

Soit
$$A = (a_{i,j})_{1 \le i,j \le n} \in \mathfrak{M}_n(\mathbb{R})$$
 telle que : $\forall i \in \{1,\ldots,n\} \ |a_{i,i}| > \sum_{j \ne i} |a_{i,j}|$. Montrer que A est inversible.

Exercice 8 Soit $n \geq 2$. Montrer que tout hyperplan de $\mathfrak{M}_n(\mathbb{K})$ contient au moins une matrice inversible.

Exercice 9 Soient $E = \mathbb{R}_3[X]$ et ϕ l'application qui à $P \in E$ associe le reste de la division euclidienne de $(X^4 - 1)P$ par $(X^4 - X)$.

- 1. Montrer que $\phi \in \mathcal{L}(E)$.
- 2. Déterminer la matrice de ϕ dans la base canonique de E.
- 3. Déterminer l'image et le noyau de ϕ .
- 4. Déterminer les valeurs propres de ϕ (*i.e.* trouver les $\lambda \in \mathbb{R}$ tel qu'il existe $P \in E \setminus \{0_E\}$ tel que $\phi(P) = \lambda P$) et déterminer les vecteurs propres associée (*i.e.* les vecteurs P en question).

Exercice 10 Pour $n \in \mathbb{N}^*$ et $P \in \mathbb{R}_n[X]$, on pose $u(P) = (X^2 - 1)P' - nXP$.

- 1. Montrer que u est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Écrire la matrice $A = \operatorname{Mat}_{Can}(u)$, où Can est la base canonique de $\mathbb{R}_n[X]$.
- 3. Déterminer le noyau de u. Pour quelles valeurs de n l'endomorphisme u est-il un automorphisme?

Exercice 11 Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice représentative dans la base canonique de \mathbb{R}^3 est :

$$M = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{array}\right).$$

- 1. Déterminer ker(f), Im(f).
- 2. Trouver une base dans laquelle la matrice représentative de f n'a qu'un terme non nul.
- 3. Utiliser ce changement de bases pour calculer M^n pour $n \in \mathbb{N}$.

Exercice 12 Soit E un \mathbb{K} -espace vectoriel de base $\mathcal{B} = (e_1, e_2, e_3)$. Soit f l'endomorphisme de E dont la matrice représentative dans la base \mathcal{B} est :

$$M = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{array}\right).$$

- 1. On pose $u_1 = e_2 + e_3$, $u_2 = e_1 + e_3$, $u_3 = e_1 + e_2$. Montrer que $\mathcal{C} = (e_1, e_2, e_3)$ est une base de E et donner la matrice A' de f dans cette nouvelle base.
- 2. Calculer pour $n \in \mathbb{N}$ A'^n puis A^n .
- 3. Étudier les suites (x_n) , (y_n) et (z_n) données par les relations de récurrence : $\forall n \geq 0$, $\begin{cases} x_{n+1} = 2x_n \\ y_{n+1} = x_n + 3y_n z_n \\ z_{n+1} = x_n + y_n + z_n \end{cases}$

Exercice 13 Soit E un \mathbb{R} -espace vectoriel de dimension n. Et soit $u \in \mathcal{L}(E)$ un endomorphisme nilpotent de E, vérifiant $u^{n-1} \neq 0$ et $u^n = 0$. Montrer qu'il existe une base de E dans laquelle u a pour matrice $(a_{i,j})_{1 \leq i,j \leq n}$ définie par $a_{j+1,j} = 1$ et $a_{i,j} = 0$ pour $i \neq j+1$.

Exercice 14 Considérons les trois fonctions de la variable réelle f_0 , f_1 et f_3 définies par :

$$\forall x \in \mathbb{R}, \quad f_0(x) = e^{-2x}, \quad f_1(x) = xe^{-2x}, \quad f_2(x) = x^2e^{-2x}$$

et posons $E = \text{Vect}(f_0, f_1, f_2)$ le sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ engendré par ces applications.

- 1. Démontrer que $\mathcal{B} = (f_0, f_1, f_2)$ est une base de E.
- 2. Notons d'application qui à $f \in E$ associe d(f) = f'.
 - (a) Montrer que $d \in \mathcal{L}(E)$.
 - (b) Écrire $A = \operatorname{Mat}_{\mathcal{B}}(d)$
- 3. (a) Vérifier que $(A+2I_3)^3=O_3$. (Nous avons noté 0_3 et I_3 les matrices respectivement nulle et unité de $\mathfrak{M}_3(\mathbb{R})$.)
 - (b) Déterminer une équation différentielle du 3ème ordre vérifiée par toutes les fonctions f de E.
- 4. (a) Montrer que d est un automorphisme de E et déterminer $\operatorname{Mat}_{\mathcal{B}}(d^{-1})$.
 - (b) Que peut-on dire de $d^{-1}(g)$, où g est une fonction quelconque de E?
 - (c) Soit $g = f_0 + f_1 + f_2$. Déterminer $\operatorname{Mat}_{\mathcal{B}}(d^{-1}(g))$ puis $(d^{-1}(g))(x)$, pour $x \in \mathbb{R}$.
 - (d) Pour tout a réel, on définit $G_a(x) = \int_a^x g(t) dt$ pour tout réel x. Déterminer $\lim_{x \to +\infty} (d^{-1}(g))(x)$ et $\lim_{x \to +\infty} G_a(x)$. Existe-t-il un réel a tel que $d^{-1}(g) = G_a$?

Exercice 15 Soit $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $d: \begin{cases} E & \to E \\ f & \to f' \end{cases}$. Notons $F = \text{Vect}(\sin, \cos, \sin, \cosh)$.

- 1. (a) Déterminer la dimension de F et montrer que F est stable par d. On note φ l'endomorphisme obtenu par restriction de d à F.
 - (b) Écrire la matrice M de φ dans une base bien choisie de F. Calculer M^n pour tout $n \in \mathbb{N}$.
 - (c) Montrer que φ est un automorphisme de F. Ecrire M^{-1} .
- 2. Déterminer $\ker(\varphi Id_F)$ et $\operatorname{Im}(\varphi Id_F)$ en utilisant la matrice M. En déduire toutes les solutions sur F de l'équation différentielle :

$$\forall t \in \mathbb{R} \quad y'(t) - y(t) = \sin t.$$

Exercice 16

- 1. Soit p un projecteur de E. Montrer que $\operatorname{tr} p = \operatorname{rg} p$.
- 2. Trace et formes linéaires sur $\mathfrak{M}_n(\mathbb{K})$:

- (a) Soit f une forme linéaire sur $\mathfrak{M}_n(\mathbb{K})$ telle que : $\forall (A,B) \in \mathfrak{M}_n(\mathbb{K})^2$ f(AB) = f(BA). Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que : $\forall A \in \mathfrak{M}_n(\mathbb{K})$ $f(A) = \alpha$ trA.
- (b) Soit $A \in \mathfrak{M}_n(\mathbb{K})$. On définit l'application Φ_A de $\mathfrak{M}_n(\mathbb{K})$ dans \mathbb{K} définie par $\Phi_A(X) = \operatorname{tr}(AX)$. Démontrer que Φ_A est une forme linéaire sur l'espace vectoriel $M_n(\mathbb{K})$.
- (c) Démontrer que pour toute forme linéaire φ sur $M_n(\mathbb{K})$, il existe un élément A de $M_n(K)$ et un seul tel que $\varphi = \Phi_A$.

Exercice 17 Soit $A \in \mathfrak{M}_n(\mathbb{K})$ vérifiant $A^2 = A$. On définit $\phi : \begin{cases} \mathfrak{M}_n(\mathbb{K}) & \to \mathfrak{M}_n(\mathbb{K}) \\ M & \to AM + MA \end{cases}$. Montrer que ϕ est un endomorphisme de $\mathfrak{M}_n(\mathbb{K})$ et déterminer $\operatorname{tr} \phi$.

Exercice 18 Déterminer suivant les valeurs de m, le rang des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 & 1 - m \\ 1 + m & -1 & 2 \\ 2 & -m & 3 \end{pmatrix} \quad ; \qquad B = \begin{pmatrix} 1 & -m & m^2 \\ m & -m^2 & m \\ m & 1 & -m^2 \end{pmatrix} \quad ; \qquad C = \begin{pmatrix} 1 & 1 & 1 & m \\ 1 & 1 & m & 1 \\ 1 & m & 1 & 1 \\ m & 1 & 1 & 1 \end{pmatrix}.$$

Exercice 19 Déterminer le rang des matrices suivantes :

$$A = \begin{pmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{pmatrix} \quad ; \qquad B = \begin{pmatrix} 1 & a & 1 & b \\ a & 1 & b & 1 \\ 1 & b & 1 & a \\ b & 1 & a & 1 \end{pmatrix}.$$